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1. INTRODUCTION

In a previous study1 we showed that for an n-layer earth model it is possible to express

the three components of the electric field and the vertical component of the magnetic field

on the surface of the earth as a space-time integration of the two horizontal components

of the magnetic field. In particular, it was shown that if t is a point on the surface (x, y

plane), and if Y is a member of the set

Y(rt) = {HZ, EZ,Ey,Ez} , (1.I)

then every member of the set Yi on the surface of a finitely conducting earth can be related

to the horizontal components of the surface magnetic field through the equation

~tf
Y, V" It) = J ] (f* 71,,,t - t')H,( ,t') dx' dy' dt'

+ j ja(y - rt - t')H1 (y, t') dx' dy' dt' (1.2)

The functions G1 z and Giy are Green's functions, which are determined from the solution

of the n-region ground model shown in figure 1.

The result given by equation (1.2) can possibly provide considerable simplification in

the numerical modelling of the high-altitude burst electromagnetic pulse (HABEMP) when

the ground response is coupled to finite-difference methods for solving the atmospheric part

of the problem. When this approach can be used it obviates the necessity of developing a

numerical representation of the ground, which then reduces the number of variables in the

problem and hence the computer running time (and cost). On the other hand, the reduction

of machine variables must be weighed against the speed of the numerical computation for

the integral boundary conditions arising from the Green's function formalism. This ques-

(1)I. Kohlberg, Surface Integral Representation of Three Dimensional Electromagnet-

ic Ground Response for Multi-Layered Earth With Frequency Dependent Electrical Param-

eters, April 1986, Final Report for Harry Diamond Laboratories, Contract No. DAAG29-

81-D-010, Delivery Order 2064, Battelle Columbus Laboratories (Prime Contractor).
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tion is as yet unresolved; in any event it will depend on the number of ground layers being

considered, the values of the electrical parameters, and the time range of interest.

Equation (1.2) is derived by solving the n-region three-dimensional problem in the

Fourier (space) and Laplace (time) domains and ultimately performing inverse Fourier/La-

place transforms. (The reader is referred to reference 1 for details.) Although the formalism

and mathematical procedure are general, the analytical Fourier/Laplace transform inver-

sion may not always be possible. For the purposes of assessing the feasibility of using

the theory of reference 1, four special-case solutions were developed. These included the

following models:

(a) one layer, one dimension,

(b) one layer, two dimensions,

(c) one layer, three dimensions, and

(d) two layers, one dimension.

In this study we extend the number of solutions to include the two-layer two-di-

mensional case. The geometry for this case is shown in figure 2. Following an earlier

analysis, 1 we consider the case where the displacement current in the ground is less than

the conduction current. We assume that spatial variations in the y-direction are neglected.

Our principal concern is to establish the space-time relationships between E., Ey and the

driving functions, H,, H9.

2. MATHEMATICAL NOTATION

As will become evident in sections 3 and 4 of this report, several mathematical oper-

ations are performed on the four surface values of the fields used in this analysis: namely,

Ex(x,t), Ey(x,t), H,(x,t), and Hy(x,t). The purpose of this section is to define these op-

erations and develop a shorthand notation for dealing with them. If F(x, t) represents any

one of the aforementioned four functions, the Fourier and Laplace transforms are defined

by the tollowing operations:

F(k, t) MF(xt) = 1 I ikxF(x,t) dx , (2.1)

2
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F(x, s) = LF(x, t) = e- tF(x,t) dt , (2.2)

M = Fourier transform operator, and

L = Laplace transform operator.

The double-transformed function, F(k, s), is given by

P(k,s) =M LF(x,t) = LMF(x,t)

__ f etf e-ikxF(xt) dx dt (2.3)27r I -' 0

As indicated in equation (2.3), the order in which the transforms are taken is imma-

terial.

The inverse Fourier and Laplace operators are defined by operations

00
Mf- '(k,t) J e F(k,t) dk = F(x,t) , (2.4)

L P'(x, s) = f etF(x,s) ds = F(x,t) (2.5)

It also follows that

M- P(k, s) = F(x, s) , (2.6)

L- F(k,s) F= (k,t) (2.7)

Using the Faltung theorem we can write, for any functions f1 (k,.s) and f 2 (k,s),

1 00
-' (f1(k, )f 2 (k, s)) = 2 f (x- x',S)f 2 '(x, s) dx'

Sf f(x - x ',s)f(x',s) dx' (2.8)
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The shorthand notation for the operation of equation (2.8) is

_M- 1 (f1(k,s)f 2 (k, s)) = fi(x, s) ® f2(x,s) , (2.9)

where the "®" stands for the space integration of equation (2.8). It also readily follows

that

MM_ ((k,t)f 2 (k,t)) f i(x, t) 0 f 2 (Xt) . (2.10)

The convolution theorem for the Laplace transform yields the following result:

L- (f1(k,s)f 2 (k,s)) = f1 (k,t - t')f 2 (k,t') dt'

= f 2 (k,t - t')f1 (k,t') dt' (2.11)

The shorthand notation for the convolution integration in equation (2.11) is

L-1 (f1(k,s)f12 (k,s)) = f1 (k,t) * j 2 (k,t) (2.12)

where "," denotes the convolution operation. We also have

L-1 fx ,S) 2 (XS)) fI(Xt) * f 2 (Xt) .(2.13)

The mathematical formalism and notation developed through equation (2.13) provides

a compact way of identifying the Green's function which relates the surface values of the

electric field to the magnetic field components. For example, as shown in section 3, we

have the relationship

Ev(k,s) = ¢(k,s)Al,(k,s) (2.14)

Using equations (2.8) and (2.9) we can write

M-' L-1By (k, q) = M. E(k,5t) = Ey(x,t) (2.15)

I mm | |5



If we identify 0 (k,s) as f1(k,s) and I,(k,s) as f2(k,s), we deduce the relationship

Ey(x,t) = G(x,t) *H,(x,t)

EY(Xt) = f ] G(x - x',t - t')H, (x',t') dx' dt' (2.16)

where

G (x, t) M M- L -  (k , s)  M - M (k, s)

= Green's function (2.17)

Employing the techniques of reference 1 we can derive an expression for 0(k, s). The

thrust of this investigation is to develop techniques for determining G(x, t) from the inverse

Fourier/Laplace transforms.

3. EQUATIONS AT SURFACE OF EARTH

It is shown in equation (3.21) of reference 1 that for the nth region of an n-region

ground model, the equations for E,,,,(z,k., ,ky,s) and Ey,,(z, k,,ky,8) in terms of the

magnetic field components, -Ix,, (z, kx, ky , s), Fly,n (z, kz, k, s), are given by

'n = 2-n [ I n + '(kykxH-,. + k 2fly'n)] , (3.1)

-nR~y,n ^in a-- [Iz,n - --l(k 2 f-Izn + kxkyI-Iy,n)] (3.2)

where ar conductivity and

"Y, = ±A, (3.3)

An =/8 oSn + k2+ , (3.4)

with + being used for the upward wave, and - being used for the downward wave.

6



We immediately note from equations (3.1) and (3.2) that if either ky or k, is equal

to zero (this corresponds to neglecting spatial variations in the y and x directions, re-

spectively) the equations are decoupled into two independent pairs. For example, setting

ky = 0 gives

= , (3.5)
Un

Ey,n Ln 1 -rx, n (3.6)

with In now being given by

'In = ±V"s~nun + kx2 (3.7)

When equations (3.5) to (3.7) are used in the solution of the two-region problem of

figure 2, it can be shown that the surface field equations are given by

rgyri ,fy+2 V (3.8)
n= 

i 

V 

j
!Ey -wI /t+2 E - (.-

n=1

where

C1  _ , 2

AA2

A1 - V/sPaI + k 2 , A2 = s/A2 + k 2

', r  r2 - riexp(-2A/)
r 2 + ri

i/ w  W2 - WI exp(-2AI) (3.10)W2 + WI

For brevity we have replaced kx by k, it being understood that we only considering

spatial variations in the x direction.

7



Equations (3.8) and (3.9) reduce to the one-layer, two-dimensional case considered in

reference 1 when 02 = 01. In this situation, T, and %P/, are both equal to zero, and we

obtain the solutions

Ez,o = rl/t , (3.11)

Ey,o = -wi/. (3.12)

The space-time behavior of Ey,o(x, t) is given by1

E,0= M- 1 L-E',o

Uf o. r~[ X X) - e
-~ t - t'exp -( ) j Hx(x', t') dx' dt' (3.13)

For the one-layer, two-dimensional case, equation (3.13) represents a means of es-

tablishing the boundary condition on top of the earth. This equation can be written in

finite-difference form and thus can be used with the HABEMP equations above the earth's

surface to provide a self-consistent representation of the overall physical model. The key

question is "Under what conditions is the method more efficient than representing the

ground in a finite-difference approximation?" The answer to this will be forthcoming in

the near future.

For the two-layer, two-dimensional case being considered here, the deduction of E, (x, t)

in terms of H,(x,t) is more complicated than that of equation (3.13) because of the com-

plexity of 4',(k,s). A similar statement can be made for the E,,Hy pair; however, for

brevity this pair is not being considered since the analysis is similar to the E,, Hz, case.

It is possible to express the solution of equation (3.9) in several different ways, leading

in turn to different algorithms for completing the calculation of Ej(x,t). For example,

performing the L-1 M-1 operation directly on equation (3.9) leads to the result

EY =Ey,o+21 E,,n , (3.14)
n=1

8



where

Ey, n Gn(x,t) ® *H,(x,t) n > 1 (3.15)

G,(x,t)=L - _'M - (-q'ww-  ) (3.16)

An alternative and mathematically equivalent formalism is based on using the knowl-

edge of Ey,o deduced from equation (3.13). We can write equation (3.9) in the form

4- y,o + 2 Z eyo , (3.17)
n=1

which then leads to the relationship

00

Ey = Ey,o + 2 E Ey,, (3.18)

Ey,, is expressed as

Ey,n = G n(x, t) 0 *Ey,o(x, t) , (3.19)

with G, (x, t) now given by

Gn(x,t) L 1 M - ('I n ) (3.20)

The analysis of this investigation is concerned with the determination of G,(x, t) from

equation (3.19).

There is, however, one additional method that can be used, which is related to equation

(3.20). We include this for completeness. Consider, for example, the sequence of functions

9



Ey,, = ,,Eyn-I(3.21)

Using equation (3.21) we can write

EY= Ey,0 + 2 1: .Y (3.22)
n=I

Ey, is now given by

EYn= G,® E~- (3.23)

with

Gi (x, t) = tI' (x, t) =LM 1 'qfw(k, s) .(3.24)

It is also observed by comparing equations (3.20) and (3.24) that Gn(x,t) is the

(n - 1 ) St space-time convolution of %Pw(x,t). That is,

G3 = T, ®* 9/. ®*' ,F

n -I convolutions

10



In summary, it is clear that the determination of T.' (x, t), as given by equation (3.24),

is the basic building block of the calculation. This is the focus of the effort of the next

section.

4. MATHEMATICAL STRUCTURE OF Gn(x,t)

From equation (3.10) we can write

-t = (g (k, s)v(k, s)) f) , (4.1)

where

On(k,s) = w2 -w) (4.2)(W 2 -+ W 1

V)(ks) = exp(-2nAI) (4.3)

Examination of equation (3.17) shows that the electric field at the surface can be

considered as a sum of terms involving multiple round-trip reflections from the second

layer. This can be seen for example by first examining the inverse Laplace transform of

We have

= L-exp(-2nlV/s_ai + k 2)

= L-'exp(-2n1 /'u-V/s + a,) (4.4)

where

a k -
(4.5)

Using the formula

11



L_-f(s + a,) = e- 1tL- f(s) (4.6)

we obtain

O)(k,t) = e- tOn(t) , (4.7)

where

n~t = 1T_ ex (n 2 TR~ (4.8)
2v/W t3/ 2 exp 4t

and

TR = L 2 gAU = two-way diffusion time to second layer

L = 21 = round-trip distance

As observed from equation (4.8), for

> 1 (4.9)

t

the damping will become severe and perhaps only one term in the expansion will be

necessary. Moreover, On is in general a rapidiy decreasing function of n, as can be seen by

examining its maximum value, 0 nmaz. This is determined by solving the equation

dO- 0  (4.10)

dt

for the time at which the maximum occurs; this time is given by

n2 TR

tm= 6 , (4.11)6

and the corresponding value of On is

63/2 1 1 3
On, max 2v/ - - e 2 (4.12)

12



The foregoing equation supports the conjecture that higher-order terms provide diminish-

ing contributions to the overall solution.

The main difficulty in determining

G,(x,t) = L - 1 M-I'Vn = M-1L-L-I, (4.13)

is attributed to performing the inverse Laplace transform of ,n(k, s). Using equation (3.10)

in equation (4.2) yields

g (k,s) = \J + A2 )n (4.14)

where

A1 - A2

9- A1  A2  (4.15)

and A1, A2 are given by equation (3.10). Let us first consider some of the mathematical

properties of gn. We write g, in the form

_ Al- 1 \A2 Al -A 2  _(Al-A 2 ) 2  (.6
_ = A1 A2 Al -A 2  2~A (.6

Using equation (3.10) we have

- A22 = sy(a - C2) (4.17)

Substituting equations (4.16) and (4.17) into equation (4.14), and subsequently using the

binomial expansion for (.\ 1 - A2)
2n we obtain

n 2n
S( O1 ) I: b 2 nAmA A2 ) m  (4.18)0,n =Ual c2) M= ,0 2) ,'•

where b2n,m is the binomial coefficient

(2n)! (4.19)
b2n ,rm (2n - m)!m!

Let us now consider the structure of the terms in equation (4.18). For the even terms,

characterized by

13



n=2m' O<m'<n (4.20)

we have

A n- ) = (a + 2 ) (sSa 2 + k2) m 1 (4.21)

For the odd numbered terms, characterized by

m=2m +1 , O<m <n-1 , (4.22)

we can write

I#II II II

",2 f-m (_) m  = -(siti + k 2)n - m -(slAC 2 + k2)m sr (4.23)

where

r /siAa + k 2 VsAa 2 + k2  (4.24)
s

I II II

By expressing (slia, + k2)n - m ' , (sAua 2 + k2)m , (sla, + k2)m" , and (stua2 + k2)m

as a binomial expansion, and substituting the results into equation (4.18), it can be shown

by combining the summations that g, is of the form

g.n = n1 2 ,

where

gfl = kl((1 )),l Arsrk2P (4.25)
\r=O

9n2 = s( ((O, - .))n Brsk q  sr (4.26)

(r=0

In the foregoing expressions, Ar and Br are constants which depend on cl,ar2 and the

index r, and the integers p and q are positive linear functions of the summation index, r.

14



It is not necessary to go into the tedious details to establish the implications of equations

(4.25) and (4.26) regarding the computation of Gn(x,t) from equation (4.13).

Using equations (4.1) and (4.3) in equations (4.25) and (4.26) we have

. Iw+ 1 w,2

where

n n A, k2p n(k,s) (4.27)

Bw,1  ( ( -- (2).n .'-n--

'I'w,2 =) r n_ , - Tn(k,s)sr (4.28)

From equation (4.13) we deduce

Gn(X,t) = G, 1(x,t) + Gn 2 (X,t) , (4.29)

where

1Gn, = (/~la) n EAry,(x't) 1(4.30)

yn ZBrZr(x,t) , (4.31)a2:(A(Cr, - C2)1

Yr(x,t) = M - 1 L - ' k 2 p vn(ks) (4.32)

Z -(X, t) M 2 r Vn(ks)sr) (4.33)

If we now let

Vn(X,t) = M 1 L-lon(k,s) (4.34)

and

15



@ (x,t) = M-1 L-(o, (k,s)sP(k,s)) ,(4.35)

it then follows from equations (2.6) and (2.7) that

Y(x, t) . .. dt, dt2 .. dt,-, a~x 2)v,(X,tl) ,(4.36)

Zr(xt) = . dti dt 2 ""dtn- x2 )q (x,tj) (4.37)

In summary, we have shown that if one can determine v,(x,t) and D,(x, t), it is pos-

sible to determine the Green's function G, (x, t) by space derivates on v, and -D followed

by repeated time integrations. The utility of this approach depends on the simplicity and

speed of performing the time integration.

In equation (4.7) we showed

,(kt) = L-lo(k,s) = exp t O,(t) (4.38)

We now have

v,(x,t) = M- L-'V.(k,s) = 8,(t)R(x,t) , (4.39)

where

R (x, t) e ik x exp - k2 t dk
f -00 k -al

7-- - exp (4.40)

It is observed that v,(x, t) can be expressed in closed form, which facilitates the compu-

tation of equation (4.36).

Now let us consider the deduction of t,, (x,t). We have

t,,(x,t) =M-' L-' (sv,,(k,s)r(k, s))

a - (m- LPn(k,s)) , (4.41)

16



where

Pn(k,s) = in(k,s)P(k,s) (4.42)

By examining equations (4.7), (4.8), and (4.24), which are the constitutents of equa-

tion (4.42), we notice that the only difference between P. and P, (k, s) is the replacement

of TR by n2 TR. Thus, if we can determine

Pi(x,t) = M'L -P(k, s) , (4.43)

we can determine P, (x, t) by substituting n 2 TR for TR in the resultant expression.

For the purposes of this investigation we are limiting the calculation to the evaluation

of

G,(x,t) -
L - X'(y,(k,s)V l (k,s)) (4.44)

This provides the contribution to the surface value of the electric field from the first round-

trip reflection. In addition, section 5 shows that the calculation of G1 (x, t) includes as one

of its components the computation of PI (x, t).

5. CALCULATION OF GI(x,t)

Starting from equation (4.44) we have

G,(x,t) = -' L'(9l(k,s))I(k,s))Jot
=M - 1  Ol(k,t')Ol(k,t - t') dt'

oO~

U s] ik .i( k , t ')( k t ) d t' d k.(5 1

Using equation (4.16) we can write

12 2( - U2) (A + A2 - 2AIA 2) (5.2)

17



S = + a 6 2 )+ 2 a - or s+ 2  (5.3)
SPOl- ar2)

where

k 2

k 2

We also have

(k,- 01 + , 62(t) + 2k 2  H(t)- 2Vl L-1 (5.5)
Ol -02 IU (O -a2) 2 0l - 2

where

=_ _+ __V_+ _ 
S jt a1 0a2 r

b(t) = delta function

H(t) = step function (5.6)

From equation (5.5) we can write

,(k,t) = ,1u + 012 + g13 , (5.7)

where

011 - 6(t) ,
a1 - a 2

012 2k2  HI
A l(l - 02)

01 1-, 2 Q (k, t)Or, - tr2

Q (k, t) -L' (V T a,',S+ a2) .(5.8)

As shown in appendix A, i (k, t) is given by

Q(k,t) = e-t [f3I(/t) + aI(fit)]

+ (a2 - 3 2 ) J e-UI(3u) du + 6(t) (5.9)

18



where

2k2 (5.10)

Using equations (4.7) and (4.8) we can write

v(k,t)=exp-k 2t /T/ ) 4T

If we insert equations (5.7) to (5.11) into equation (5.1), and note that we can combine

the 6(t) of equation (5.9) with that of equation (5.8), we can write

Gi(x,t) = Gi,l + G 1,2 + G 1,3 , (5.12)

where

Gly = 0 jikx (k,t')- 1(k,t - t') dt' dk , j = 1,2,3 , (5.13)

kl(k,t) = V - V F r 6(t) , (5.14)

2k2(k, t) -(al -02) H(t) , (5.15)

3(k,t) -2 Ua/--u2 [L1(k,t)+ L 2(k,t) + L3(k,t)] (5.16)

L, (k, t) -= fe-O"Il (0t) , (5.17)

L 2(k,t) = ae-"l(t) , (5.18)

L3(k, t) = (a2 _ 32) 1 -QIoC/u) du (5.19)
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It should be noted that although a, - U2 appears in the denominator of equations

(5.15) and (5.16), the sum of ¢02 + 03 must equal zero in the limit of a, = a2 (note that

41 is already zero in this case). This follows from the observation that there can be no

reflections in this situation. This is easily seen by using approximations to L , L 2 , and L 3

in the limit of 3 --+ 0.

In the next subsections we perform the calculations of Gi.

5.1 CALCULATION OF Gl,l(x,t)

From equations (5.13) and (5.14) we have

01 (k, t)vl (k, t- t') dt' -v r i - v'cr t)(k '
= /__ (t)lkt -t) t

= exp k2 f(t) (5.20)

where

f)-exp W R) (5.21)

Performing the integration over k space yields

G1 ______ /r2f f 0 ikzex (_ k t  AC1, v ,ft) __- xpy ( , dk
GI =v + Writa

- f+ texp(f ( t ) 4x) t

I I/-- N/U 1 TR 1 [ TR + X2
-- p2 t2  nep -\ 1+ )J (5.22)

5.2 CALCULATION OF G 1 ,2

From equations (5.13) and (5.15) we have

fo t 2k 2  ( k 2 t ,

G 1 ,2  e exp -- f(t') dt' dk (5.23)F.0 A,(Or - 62) Ao,

Replacing k 2 by - 2 /49x 2 we obtain
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C1 ,2 = 9- f(t') dt']0 eitkexp ko- dk (5.24)
JUOI- a72) aX 2 0f,0 A'

The integral in equation (5.24) is the same as that in equation (5.22), so that we can write

2 a 2 /ft 1  TR 1 (~ 1 T 1+K
, (Cl -C2) aX2 J 2(t,)2 L x V dt'

Making the substitution

U TR 1  x2 ) r (5.26)

permits the integration to be performed through the relationship

|du'=-12_ dt' (5.27)

We obtain

4 1 a2

GI,2 (x,t) - 42 U(x, t) (5.28)A L i - 2 aX2

where

-- (x t exp T I+ j7 (5.29)
I+7- -  4 t

Using equation (3.19), the contribution from the first reflection will be given by

Ey, = GI(xt) ® *Ey,o(x, t) , (5.30)

and in particular the contribution from G, 2 is

Ey, 1, 2 = 7r - U (X',t') Ey,o (x - x',t - t') dx' dt' (5.31)

Based on application of the Faltung theorem discussed in appendix B, the foregoing

integration can be converted to the form
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E'= 1, 2 J j U(x',t) ( a 2EY'°(zt - t) - dx' dt' (5.32)

It may turn out that for computational purposes the form given by equation (5.32) is easier

to evaluate.

5.3 CALCULATION OF G 1 ,3

Inserting equation (5.16) into equation (5.13) and rearranging gives the following

expression for G 1,3 :

GI, 3 (X,= dt' f(t - t') (N 1 (x, t') + N 2 (x, t') + N 3 (x, t')) , (5.33)
0.1 - J2o

where

N, = 0/-#eik- e-ot'II(i3t')exp k2  -t') dk , (5.34)

N2 ae kz e -ikt'x JI(/t')exp ( k (t - t')) dk (5.35)

N 3  J (a2 -# 2 ) eikj e -uIo(flu) du exp - (t - t') dk (5.36)

equations (5.34) to (5.36) can be simplified using the formulas

( -) e cs dO , (5.37)

I1 (z) -f ez co cos 0dO , (5.38)

and writing a and f in the form

1Lk2 (5.39)
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-k 2  (5.40)
gab

where

1- 1 + 1 a =2(- i (5.41)
1 1i I \ 1)(a~lO)

1 =, 1- ((5.42)

ab 2 a a 2J a 2 -a c 1

Using equations (5.37) to (5.42) in equations (5.34) and (5.35) yields

02

N, Ox2 n,
02

N a= x n2 ,(5.43)

where

nl abir cosO dO eik(exp- )k~t'
A O r b 7 r- 0 0 A r

x exp ((-!-)k2ttCoS) exp k (t - t')) dk , (5.44)

n2= e d i - k2tI
gZ a_7r J 0 J0

X exp ((-)ktIcoso) exp(--- (t-ti)) dk(

The expression for N 3 is simplified by first performing the integration over u in equa-

tion (5.36). We have

t' 
t

J e-"Il(13u) du = 'o.=r j dOf e- Peu cos 0 du

1 rdO 1-.e - ( ' - ,cos)t' (5.46)

=7r fa - Cos 0
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Inserting equation (5.46) into equation(5.36) yields

a 2
N 3 =- 2 n 3  , (5.47)

where

1r dO S(O) eikzexp (t
A3- - rOa 00.co ~

x (1-exp 1 so)k2t) d (5.48)

s~o) = 1 (_o)2o
S (0) 1- os (5.49)

Using the general formula

J ikee-k 2 dk Vr exp ( ) F(A) (5.50)

with

1 1 a Cs-I 1 (t -t'), (5.51)

fiaa Ob / Poi

t - ti

A2 - (5.52)

we deduce

3 1 C'F(A2 ) - 1 jdO S(0)F(Az) (5.53)At3- , 7 r  A-cra 7r  0

where

c'= S(o) .o (5.54)

Noting that

a 2 G-G1 <1 (5.55)

orb 2 + C1
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gives

L r dO =7rdO __ _____ ____(5.56)

1- (Ua/lb) COS 0 V1

and

C' = 7vr 1- (Oo/C)2 (557)

By comparing equation (5.51) with the exponential terms of equations (5.44) and

(5.45) we obtain

n, r cos 0 dO F(AI) , (5.58)

n2 = 1 f dO F(A 2) (5.59)

From equations (5.53), (5.58), and (5.59) we have

n=n, +n 2 +n 3  , (5.60)

nF(A 2 ) + W(O)F(Aj) dO , (5.61)
ItZOa I.Lca r

where

W(0)= -cos 0+1-S(0)
Ob

W(0) = (Ca/Gb)2 sin 2 0 (5.62)
1 - (Ca/Gb) COS 0

Combining equations (5.43), (5.47), (5.60), (5.61) and inserting the latter into (5.33) gives

02

, -x 2 [ABI, + AC12) , (5.63)

where
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A-=2
U 1 -a 2

/1 -(a/Ub)
2

_1-B =- /--- -p 2

ILoa

C- (Ora/Ob)
2 

2 P
2

A, 7r I. .a 7r

I, = / dt' f(t - t')F(A2 )

12 = dt' f(t - t')(F(A
for sin 2 e0

(F(A 1 )) = V oF(A 1)

-- a 02-- (5.64)

ab 02 + a

It is easy to see that I, reduces to the same integral as that of equation (5.25); that

is,

I= 2 U(xt) (5.65)

where U(x,t) is given by equation (5.29).

Using equations (5.41) and (5.42) we deduce

a 2 (ABI 1 ) 4 a2

Dx2 -iL(c, - -U(x,t) = -Gl, 2 (x,t) (5.66)

We observe that the foregoing contribution provides an exact cancellation to G 1,2.

Thus, the significant contribution to G 1,3 comes from the term ACI 2 . Unfortunately,

this does not appear to be easily integrated, and numerical techniques must be used.

For simplicity in presentation we shall render the results in dimensionless form. We first

compute the constant AC; we have

A1 1 ui-a 2 _K

AC - K (5.67)

wherc
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K= C 0 - 2 (5.68)
0r2 OI + U2

Let us now introduce the variable

tiy = - (5.69)
t

in equation (5.64d). We can write 12 in terms of y in the following form:

12 = I.(td, d) , (5.70)

where

S --=td 0 (1 - y 13/2 4td(1- y)

(d, Y) = for sin 2 0dO L exp (__d

Jo 1- pcosO V o '

"Yo = 1 + ry(l+ CosO0),

2d = 'Xd
4 td

ttd = -
TR

x
Xd =

02

r- 1 (5.71)
r+l

Using the dimensionless variables introduced in equation (5.71) we write, for the Green's

function,

a2
G 1 G1,1 + -(A 2 ) , (5.72)
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G, V 1 lex
2 1 + V TRL t2 x  4td

1 i 1-r 1 a2
2 Y/R 1-r TL (5.73)

The first term in equation (5.73) is that of G1,1 (cf. equation (5.22c)), expressed in terms

of TR, L, and the dimensionless variables r, td, and Xd.

The contribution to the electric field from G1 is given from equation (5.30), where

the required integrations can be performed in either Xd/td or x/t space. It is also evident

from equations (5.31) and (5.32) that the term involving a 2II0 /0xa can be converted to

an integration of IT, combined with the second partial derivative of EY,O.

Since ITO cannot be expressed in closed form, it must be provided in tabular form,

either as a function of td, Xd or td, Ad. This consideration should be reserved when the actual

implementation of this result is incorporated in the HABEMP finite-difference model.

Tabular values of IHo(td,Od) for selected values of td and od are rendered in table 1

(pp 30 and 31). Plots of H1o as a function of Od with td as a parameter for r = 0.5 are

shown in figure 3, while plots of ITO as a function of td with Od as a parameter for r = 0.5

are shown in figure 4.

6. CONCLUSION

A solution for the two region, two-dimensional electromagnetic ground response has

been developed which relates the surface components of the electric field to the surface

components of the magnetic field. This has been accomplished by deriving a universal

functional form for a dimensionless Green's function. The Green's function provides in-

creasingly more accurate approximations to the response for each successive reflection from

the second layer. This result would appear to provide simplification and reduced computer

running time in the numerical modelling of the HABEMP when the ground response is

coupled to finite-difference methods for solving the atmospheric part of the problem.
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Table 1. Values of ITo(td, 40d) for r = 0.3, 0.5, 0.7, 2.0, and 5.0

r= 0.3

0.00 0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00 5.00

0.10 0.4189 0.3450 0.2847 0.2354 0.1949 0.1345 0.0935 0.0463 0.0237 0.0126
0.30 1.7276 1.4584 1.2341 1.0469 0.8902 0.6485 0.4771 0.2657 0.1533 0.0915
0.50 2.0805 1.7740 1.5166 1.2999 1.1171 0.8312 0.6247 0.3630 0.2184 0.1355
0.75 2.1579 1.8532 1.5957 1.3776 1.1925 0.9003 0.6865 0.4104 0.2537 0.1615
1.00 2.1258 1.8340 1.5865 1.3760 1.1965 0.9117 0.7015 0.4268 0.2682 0.1734
1.50 1.9976 1.7334 1.5081 1.3156 1.1506 0.8867 0.6899 0.4288 0.2750 0.1810
2.00 1.8634 1.6227 1.4169 1.2459 1.0951 0.9649 0.7545 0.5954 0.3801 0.2497
3.00 1.6254 1.4212 1.2459 1.0951 0.9649 0.7545 0.5954 0.3801 0.2497 0.1681
4.00 1.4368 1.2592 1.1065 0.9747 0.8607 0.6760 0.5356 0.3446 0.2280 0.1544
5.00 1.2952 1.1370 1.0006 0.8828 0.7808 0.6151 0.4888 0.3161 0.2102 0.1430

r = 0.5

0.00 0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00 5.00

0.10 0.4091 0.3340 0.2730 0.2235 0.1832 0.1236 0.0839 0.0393 0.0189 0.0093
0.30 1.7094 1.4274 1.1942 1.0010 0.8407 0.5965 0.4266 0.2233 0.1205 0.0669
0.50 2.0696 1.7447 1.4738 1.2476 1.0584 0.7664 0.5595 0.3054 0.1718 0.0993
0.75 2.1547 1.8288 1.5556 1.3260 1.1328 0.8319 0.6160 0.3459 0.2000 0.1187

td 1.00 2.1278 1.8140 1.5498 1.3270 1.1387 0.8438 0.6305 0.3603 0.2119 0.1278
1.50 2.0055 1.7193 1.4772 1.2720 1.0977 0.8226 0.6215 0.3630 0.2179 0.1340
2.00 1.8744 1.6125 1.3902 1.2012 1.0401 0.7848 0.5969 0.3531 0.2146 0.1335
3.00 1.6385 1.4151 1.2249 1.0625 0.9236 0.7022 0.5381 0.3229 0.1989 0.1253
4.00 1.4502 1.2553 1.0890 0.9467 0.8248 0.6298 0.4846 0.2931 0.1818 0.1153
5.00 1.3084 1.1343 0.9856 0.8582 0.7488 0.5735 0.4426 0.2692 0.1679 0.1069

r = 0.7

0.00 0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00 5.00

0.10 0.4063 0.3301 0.2685 0.2187 0.1783 0.1189 0.0797 0.0363 0.0169 0.0080
0.30 1.7093 1.4189 1.1797 0.9824 0.8195 0.5732 0.4036 0.2042 0.1061 0.0565
0.50 2.0754 1.7385 1.4590 1.2266 1.0331 0.7368 0.5292 0.2789 0.1509 0.0837
0.75 2.1651 1.8257 1.5423 1.3054 1.1069 0.8004 0.5829 0.3158 0.1757 0.1001

td 1.00 2.1409 1.8130 1.5382 1.3075 1.1136 0.8123 0.5968 0.3290 0.1862 0.1078
1.50 2.0213 1.7210 1.4682 1.2549 1.0746 0.7925 0.5887 0.3316 0.1915 0.1131
2.00 1.8911 1.6155 1.3828 1.1859 1.0190 0.7565 0.5657 0.3227 0.1887 0.1127
3.00 1.6550 1.4193 1.2196 1.0500 0.9056 0.6774 0.5103 0.2953 0.1750 0.1059
4.00 1.4658 1.2598 1.0849 0.9360 0.8091 0.6078 0.4597 0.2682 0.1601 0.0975
5.00 1.3231 1.1389 0.9823 0.8488 0.7348 0.5536 0.4200 0.2463 0.1478 0.0905
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Table 1. Values of rHo(td, Od) for r = 0.3, 0.5, 0.7, 2.0, and 5.0

(continued)
r =2.0

Od

0.00 0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00 5.00

0.10 0.4258 0.3428 0.2762 0.2227 G.1797 0.1172 0.0767 0.0331 0.0145 0.0064

0.30 1.8148 1.4885 1.2223 1.0047 0.8268 0.5618 0.3835 0.1811 0.0871 0.0427

0.50 2.2159 1.8324 1.5171 1.2577 1.0439 0.7218 0.5015 0.2457 0.1227 0.0624

0.75 2.3210 1.9308 1.6083 1.3413 1.1202 0.7842 0.5519 0.2774 0.1421 0.0741

td 1.00 2.3011 1.9217 1.6070 1.3456 1.1282 0.7962 0.5649 0.2886 0.1502 0.0796
1.50 2.1798 1.8295 1.5376 1.2940 1.0905 0.7775 0.5572 0.2905 0.1543 0.0833
2.00 2.0436 1.7205 1.4505 1.2245 1.0351 0,7426 0.5355 0.2826 0.1519 0.0830
3.00 1.7928 1.5147 1.2816 1.0858 0.9211 0.6655 0.4833 0.2585 0.1408 0.0779

4.00 1.5900 1.3461 1.1412 0.9688 0.8236 0.5974 0.4355 0.2348 0.1288 0.0717

5.00 1.4365 1.2180 1.0341 0.8791 0.7484 0.5444 0.3980 0.2157 0.1189 0.0665

r = 5.0

Od

0.00 0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00 5.00

0.10 0.4777 0.3835 0.3080 0.2476 0.1991 0.1289 0.0837 0.0356 0.0153 0.0066
0.30 2.0449 1.6705 1.3660 1.1179 0.9158 0.6163 0.4162 0. 1920 0.0899 0.0427

0.50 2.5014 2.0595 1.6974 1.4003 1.1565 0.7912 0.5435 0.2596 0.1259 0.0620

0.75 2.6237 2.1725 1.8008 1.4944 1.2414 0.8595 0.5975 0.2924 0.1454 0.0734

td 1.00 2.6034 2.1638 1.8004 1.4997 1.3506 0.8735 0.6114 0.3039 0.1535 0.0786
1.50 2.4690 2.0620 1.7240 1.4431 1.2093 0.8520 0.6029 0.3056 0.1573 0.0821
2.00 2.3163 1.9403 1.6272 1.3661 1.1482 0.8139 0.5793 0.2971 0.1547 0.0817

3.00 2.0366 1.7094 1.4385 1.2119 1.0221 0.7295 0.5228 0.2717 0.1433 0.0766
4.00 1.8043 1.5197 1.2814 1.0817 0.9141 0.6548 0.4711 0.2466 0.1310 0.0705
5.00 1.6307 1.3754 1.1613 0.9817 0.8307 0.5968 0.4304 0.2265 0.1209 0.0654
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Figure 3. ITO(td, kd) as a function Of qOd with td as parameter for r =0.5.
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APPENDIX A: CALCULATION OF Q(k,t)

The basic building block for the calculation of

(k, t) =L-' (KV" 7 +clS + t2) I1((k, s)) (A. 1)

is the formula

-[1 (s+a+3) 1

= [e-tIo(t) + (a - f) e-",oC(Iu) duj H(t) (A.2)

In the foregoing expression, I. is the modified Bessel function of zero order, and H(t) is

the step function. If we make the identification

a1 + a2 _ /1 '2
2 2- +

= 1 -a Ci (1 )k (A.3)2t o 1U2
we can write (suppressing the k dependence)

Q(S) = (S + a1)R (S) (A.4)

We then have

L'Q(S) = Y' ((S + ai).(S)) = (t)

= (t) + d (t) (A.5)
dt

Substituting equation (A.2) into equation (A.5) yields

(t) = e-t pi (pt) + aio(3t)J

+ (a 2 
- o 2 ) J e-"UI(flu) du + b(t) (A.6)
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APPENDIX B: APPLICATION OF FALTUNG THEOREM

In the main body of the report we are concerned with calculations of the form

f12(x) = 1 fl(x -y)f2(y) dy (B.1)

where f2(Y) is given by

f2(y) a2.g(y) (B.2)

For computational purposes it may be desirable to organize the computation of f 12 (x)

so that only the function g(y) appears in the integration, and none of its derivatives. This

is accomplished in the following way: We let

9' (Y) = a (B.3)

so that we can write

f2(Y) = a 9'(y) (B.4)

Substituting equation (B.4) in equation (B.1) gives

f12 f 00 f (x-Y) i y dy (B.5)
27r 00oa

We now integrate equation (B.5) by parts to give

f12= [gmm !(- Y)1-00 - f '(y) of(-)dy
27r [-Y~~XJ~o 00

1 1f (y) f(x-y) dy (B.6)

Letting

z=x-y , (B.7)

we have
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a _ Of, 4z _f (B.8)

9y zz

There results

fl2_(X) 9 _(Y) (z) ) dy (B.9)

By executing the same procedure once more we obtain the desired result

fl2(X) () 23 Z6 dy (B.10)f: 2 7J7=00 (y\ z=X-Y
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MCDONNELL DOUGLAS CORP
DIKEWOOD CORP ATTN S. SCHNEIDER
ATTN TECHNICAL LIBRARY ATTN TECHNICAL LIBRARY SERVICES
1613 UNIVERSITY BLVD, NORTH EAST 5301 BOLSA AVE
ALBUQUERQUE, NM 87102 HUNTINGTON BEACH, CA 92647

ELECTRO-MAGNETIC APPLICATIONS, INC MISSION RESEARCH CORP
PO BOX 8482 ATTN J. RAYMOND
ATTN D. MEREWETHER ATTN J. CHERVENAK
ALBUQUERQUE, NM 87198 5434 RUFFIN ROAD

SAN DIEGO, CA 92123
GENERAL ELECTRIC CO
SPACE DIVISION MISSION RESEARCH CORP
VALLEY FORGE SPACE CENTER PO DRAWER 719
PO BOX 8555 ATTN W. CREVIER
ATTN J. ANDREWS ATTN C. LONGMIRE
PHILADELPHIA, PA 19101 ATTN EMP GROUP

SANTA BARBARA, CA 93102
GTE/S"LVANIA
ATTN J. KILLIAN MISSION RESEARCH CORP
1 RESEARCH DRIVE PO BOX 7816
WESTBORO, MA 01581 ATTN W. STARK

ATTN J. LUBELL
HONEYWELL, INC ATTN W. WARE
AEROSPACE & DEFENSE GROUP COLORADO SPRINGS, CO 80933
ATTN S. GRAFF
ATTN W. STEWART NORTHROP CORP
13350 US HIGHWAY 19 SOUTH ELECTRONIC DIVISION
CLEARWATER, FL 33516 ATTN L. SMITH

ATTN B. AHLPORT
IIT RESEARCH INSTITUTE 2301 W 120TH ST
ELECTROMAG COMPATIBILITY HAWTHORNE, CA 90250

ANALYSIS CTR
ATTN ACOAT R&D ASSOCIATES
N SEVERN PO BOX 9695
ANNAPOLIS, MD 21402 ATTN DOCUMENT CONTROL

ATTN W. GRAHAM
IIT RESEARCH INSTITUTE ATTN C. MO
ATTN I. MINDEL ATTN M. GROVER
10 W 35TH ST MARINA DEL REY, CA 90291
CHICAGO, IL 60616

RAYTHEON CO
IRT CORP ATTN G. JOSHI
PO BOX 81087 ATTN H. FLESCHER
ATTN J. KNIGHTON HARTWELL ROAD
SAN DIEGO, CA 92138 BEDFORD, MA 01730

I. KOHLBERG (15 COPIES) ROCKWELL INTERNATIONAL
KOHLBERG ASSOC, INC. PO BOX 92098
PO BOX 23077 ATTN B-1 DIV TIC (BAOB)
ALEXANDRIA, VA 22304 LOS ANGELES, CA 90009

MARTIN MARIETTA CORP SCIENCE APP. INC
PO BOX 5837 ATTN R. SUTTON
ATTN M. GRIFFITH (2 COPIES) 1710 GOODRICH DR
ATTN J. CASALESE McCLEAN, VA 221-2
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DISTRIBUTION (cont'd)

SEA USAISC

MARINER SQUARE ATTN RECORD COPY, ASQNC-LAB-TS

PO BOX 31819 ATTN TECHNICAL REPORTS BRANCH,

ATTN W. HUTCHINSON ASQNC-LAB-TR

SUITE 127
1900 N NORTHLAKE WAY HARRY DIAMOND LABORATORIES

SEATTLE, WA 98103 ATTN D/DIVISION DIRECTORS

ATTN CHIEF, SLCHD-IT-EA
SRI INTERNATIONAL ATTN B. ZABLUKOWSKI, SLCHD-TA-ET

ATTN E. VANCE ATTN J. M. DEHART, SLCHD-TA-SE
ATTN A. WHITSON ATTN DIVISION DIRECTOR, SLCHD-NW

333 RAVENSWOOD AVE ATTN W. L. VAULT, SLCHD-NW
MENLO PARK, CA 94025 ATTN DIVISION DIRECTOR, SLCHD-NW-E

ATTN CHIEF, SLCHD-NW-EC (5 COPIES)

TELEDYNE BROWN ENGINEERING ATTN R. J. CHASE, SLCHD-NW-EP

ATTN D. GUICE ATTN T. H. MAK, SLCHD-NW-EP

CUMMINGS RESEARCH PARK ATTN CHIEF, SLCHD-NW-EH

HUNTSVILLE, AL 35807 ATTN CHIEF, SLCHD-NW-ES
ATTN CHIEF, SLCHD-NW-P (10 COPIES)

TRW ELECTRONICS & DEFENSE ATTN DIVISION DIRECTOR, SLCHD-NW-R

SYSTEMS GROUP ATTN CHIEF, SLCHD-NW-RP (2 COPIES)

ATTN W. GARGARO ATTN DIVISION DIRECTOR, SLCHD-RT

ATTN L. MAGNOLIA ATTN CHIEF, SLCHD-TT

ATTN R. PLEBUCH ATTN C. S. KENYON, SLCHD-NW-EP

ATTN C. ADAMS ATTN C. LE, SLCHD-NW-EP

ATTN H. HOLLOWAY ATTN T. MAK, SLCHD-NW-EP

ATTN J. PENAR ATTN A. NGUYEN, SLCHD-NW-EP

ONE SPACE PARK ATTN C. REIFF, SLCHD-NW-EP
REDONDO BEACH, CA 90278 ATTN C. H. WILSON, SLCHD-NW-EP

ATTN T. WYATT, SLCHD-NW-EP (10 COPIES)

US ARMY LABORATORY COMMAND
ATTN TECHNICAL DIRECTOR, AMSLC-TD

INSTALLATION SUPPORT ACTIVITY

ATTN LIBRARY, SLCIS-IM-TL (3 COPIES)

ATTN LIBRARY, SLCIS-IM-TL (WOODBRIDGE)

ATTN LEGAL OFFICE, SLCIS-CC
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